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Abstract: Monitoring systems to assess the on-line condition of
generator stator windings, bearings and the air gap are now widely
employed by hydrogenerator plant operators. Although salient
pole rotor windings tend to be very reliable, in each major outage
plant personnel spend a considerable amount of time doing the
‘pole drop’ test, to assure that there are no shorted turns on the
field poles. In addition, the pole drop test may not be effective in
detecting shorted turns in the standstill condition. Unfortunately,
there is no on-line monitor that explicitly determines the condition
of the rotor field windings.

Over the past 3 years, research has occurred to determine if rotor
shorted turns can be detected during normal generator operation
by measuring the magnetic flux from each pole as it passes a probe
that is placed in the air gap. Such monitoring has been used for
years on high-speed turbine generators. The paper presents the
results of tests on several hydrogenerators that show there is some
promise in the method. This technology can also be applied to
salient pole rotors, of 4 or more poles, typically used in very large
air compressor motors.

INTRODUCTION

Generally, the salient pole rotor windings in hydrogenerators and
large salient pole motors are very reliable. However, over the years
the insulation in the rotor windings may age, first leading to shorted
turns, and then eventually ground faults. Insulation aging occurs
as a result of overheating, load cycling and/or contamination of
the winding by partly conductive materials such as insects or dust
mixed with oil or water [1]. The most common type of salient pole
rotor used in moderate and large sized hydrogenerators and pump-
storage generators, is the ‘strip-on-edge’ type of winding on each
pole. That is, the winding is composed of strips of copper that are
fabricated around the pole piece much like a picture frame. For
large air compressor motors, either the strip-on-edge construction,
or simple magnet wire may be used. Fiberglass reinforced epoxy
and/or the film insulation on magnet wire is used to insulate
each copper turn from adjacent turns, as well as provide ground
insulation between the copper and the rotor pole. Most plants will
trip the generator once a rotor ground fault occurs.

Once a shorted turn occurs, an unbalanced magnetic pull may
occur, which in turn may cause an increase in bearing vibration.
Virtually all generators and motors are monitored for bearing
vibration. Unfortunately, there are many causes of high vibration,
of which rotor shorted turns is just one. Thus bearing vibration is
not an infallible way to detect rotor winding aging. It would also
be helpful to know that the cause of high vibration is not shorted
rotor turns.

The most reliable and common way to detect shorted turns
(and incipient ground faults) is to perform a ‘pole drop’ test [1].
In the pole drop test an AC voltage, for example 120 V AC, is
applied between the positive and negative slip rings when the
hydrogenerator is shut down and partly disassembled. The voltage

across each pole is then measured. If shorted turns are present,
there will be a smaller than average voltage drop across that pole.
This test has three significant disadvantages:

* [t can only be performed with the generator shut down - implying
a loss of revenue.

« It is time consuming to perform, especially on a large rotor with
many dozens of poles

« Since the rotor is not rotating, the centrifugal forces are not
occurring, and thus some shorts may not be present in the pole
drop test, which nevertheless will be present at normal rotating
speeds.

As organizations try to minimize the work (such as pole
drop tests) performed during unit shutdowns due to restricted
resources, and as they move to predictive maintenance to plan
any repair work based on on-line condition monitoring, there is
a need for an on-line tool that can replace the pole-drop test. For
the past 20 years, utilities have been implementing magnetic flux
monitoring in the air gap between the rotor and stator to detect
shorted turns on the cylindrical rotors of high speed steam-turbine
generators [1]. This technology has rarely been applied to salient
pole windings, possibly because the salient pole rotors are very
different from cylindrical pole rotors and interpretation of the flux
patterns is not obvious. In 2003, EPRI and the New York Power
Authority initiated a research project to determine if a variant of
flux monitoring could be applied to salient pole rotors, so that an
online monitor could produce a reliable indication of rotor shorted
turns. This paper discusses the results from this research project.

FLUX MONITORING FUNDAMENTALS

Rotor flux monitoring involves measuring the magnetic flux in
the generator air-gap to determine if field winding shorts have
occurred in the rotor poles. The radial magnetic flux is detected by
means of a flat coil (or probe) consisting of several dozen turns that
is glued to stator teeth [2]. As each rotor pole sweeps by the flux
probe, a voltage is induced in the coil that is proportional to the
flux from the pole that is passing the coil. The voltage is measured
by electronic instruments such as a digital oscilloscope or

analog-digital (A/D) converter. In a salient pole machine, the radial
magnetic flux profile across each rotor pole depends on the MW
and MVAR loading of the machine. Any change in the flux profile
within a pole at a given load must be due to shorted turns.

As each pole in the rotor passes, there will be a peak in the
induced voltage caused by the change in magnetic flux from the
pole. The voltage can then be recorded and the “average” flux
across one rotor pole can be calculated. Any turn shorted turn in a
pole reduces the effective ampere-turns of that pole and thus the
signal from the flux probe associated with that pole. The recorded
waveform data can then be analyzed to locate the poles containing
the fault, as long as one has calibrated the pole location from a
‘start’ location marked on the rotor shaft.



TABLE 1
Machines where flux probe data was collected

Company | Power No. of Poles | Turns per | Machine(s) Measured | Comments
(MW) Pole
A 60 76 17 Ul17, U25, U26 Measurements
spanned two trips
B 330 64 21 Ul, U2, U3, U4, U5, | Installed  Shorts
ueé across Turns
| C 140 30 42 U2, U3
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An algorithm was developed to maximize the sensitivity to a
pole with shorted turns. The algorithm involves integrating the
data from each pole, applying autocorrelation, and comparing the
integral from each pole to another pole [3].

PRELIMINARY MEASUREMENTS

To obtain a reliable indication of the noise conditions, and partly
to see the variety of signals, data was collected from 5 different
machines (Table 1). Unfortunately, none of the machines measured
had real pole winding shorts. Any change in signal from pole to
pole on a ‘good’ machine is considered noise, This change in signal
can be due to physical differences from pole to pole.

We were able to install temporary shorts on the 330 MW
pump storage machine, since none of the machines equipped
with the flux probes had existing turn shorts. Figure 2 shows
a photograph of a single shorted turn. Either 1 or 3 turns were
shorted, on two different poles. Figure 3 shows the magnetic
flux when two poles (numbers 8 and 48) contain temporary
shorts. Pole 8 has one shorted turn whereas pole 48 has three
turns shorted. In comparison to the plot in Figure 1, it is clear
that the algorithm cannot only identify the poles with shorts,
but how severe the”shorting is.
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Figure | shows a polar plot of pole number (circumferential axis) vs. relative magnetic flux for the 330

MW, 64-pole rotor with no shorts. The flux readings

described above. The magnetic flux is
circumference of the rotor. This flux 5 By
rotors that were measured. TN
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Polar plot of the transformed magnetic flux (on a normalized scale) versus rotor pole number for a rotor
with no shorted turns. Ideally the trace would be a perfectly round circle. Differences from perfect
roundness are due to normal physical differences around the rotor.

FIGURE 1



Example of a temporary shorted turn placed on one pole of a 330 MW
machine with a strip on edge winding.
FIGURE 2
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Polar plot of a transformed magnetic flux versus pole position when two
poles (8 and 48) contain 1 or 3 shorted turns, respectively.
FIGURE 3

CONTINUOUS MONITOR

A prototype continuous monitor (Figure 4) has been
developed that collects the data from the flux probes. The
monitor then digitizes the signals with extremely high
resolution and applies the algorithm to reduce the effect of the
main magnetic field to detect the minor perturbations caused
by shorted turns on a pole. The monitor can communicate
with the plant computer via an Ethernet connection. There
are four initial installations with more to occur in 2006.

CONCLUSIONS

The on-line detection of shorted turns on salient pole rotor
poles during normal operation of the machine now seems
feasible. With a suitable shaft marker, the shorted poles can
be identified and the severity of the short (as determined by

the number of turns that are shorted) can also be estimated. A
continuous monitoring instrument has been prototyped that
will automatically perform the measurement and analysis.
The instrument will provide an alarm in the event of a
shorted turn and indicate which poles have problems. When
deployed, this new technology can remove the need for off-
line pole drop tests, eliminate or confirm shorted turns as a
cause of high vibration, and will allow plants to plan when
salient rotor winding maintenance is prudent.
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Photograph of the prototype monitor that continuously monitors the
magnetic flux signals of salient pole rotors to detect shorted turns.
FIGURE 4
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